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1. Introduction

1.1 Who is this for?
The UTOPIAE Network is committed to creating high quality engagement opportunities for the Early
Stage Researchers working within the network and also outreach materials for the wider academic
community to benefit from.

Optimisation and Uncertainty Quantification, whilst representing the future for a large number
of research fields, are relatively unknown disciplines and yet the benefit and impact they can provide
for researchers is vast. In order to try to raise awareness, UTOPIAE has created a Continuous
Professional Development online resource and training sessions aimed at teachers of Advanced
Higher Physics and Mathematics, which is in line with Scotland’s Curriculum for Excellence. Sup-
ported by the Glasgow City Council, the STEM Network, and Scottish Schools Education Resource
Centre these materials have been published online for teachers to use within a classroom context. A
training workshop run by Early Stage Researchers from the UTOPIAE Network will be hosted at the
University of Strathclyde in 2019 and pre-registrations can be made at this link: http://utopiae.eu/2-
2/utopiae-training/outreach/optimisation-and-uncertainty-quantification-cpd-training-course/

1.2 What are Optimisation and Uncertainty Quantification and why are they
important?
In an expanding world with limited resources and increasing complexity, optimisation and computa-
tional intelligence have become a necessity. Optimisation can turn a problem into a solution and
computational intelligence can offer new solutions to effectively make complexity manageable.

This is especially true in space and aerospace where complex systems need to operate optimally
often in harsh and inhospitable environments with a high level of reliability and robustness. In
Space and Aerospace Sciences, many applications require the solution of global single and/or multi-
objective optimization problems, including mixed variables, multi-modal and non-differentiable
quantities.

From global trajectory optimisation to multidisciplinary aircraft and spacecraft design, from
planning and scheduling for autonomous vehicles to the synthesis of robust controllers for airplanes
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or satellites, computational intelligence (CI) techniques have become an important – and in many
cases inevitable – tool for tackling these kinds of problems, providing useful and non-intuitive
solutions.

UTOPIAE (Uncertainty Treatment and Optimisation in Aerospace Engineering) is a four year
Research and Training global network co-ordinated from the Aerospace Centre of Excellence at
University of Strathclyde and funded through the European Commission’s H2020 programme for
four years. Whilst UTOPIAE is working within the domain of Aerospace, these tools and solution
can be applied in other contexts.

UTOPIAE is the first training network that addresses the challenge of finding the ideal compro-
mise between enhancing reliability and safety and reducing resource utilisation. UTOPIAE stands
upon the shoulders of the existing theoretical and practical developments in the areas of Uncertainty
Quantification and Optimisation but progresses beyond the state of the art pushing the boundaries to
the edge of what can be computed..

From the control of manufacturing processes to air traffic management, from decision making
on multi-phase programmes to space situational awareness, Uncertainty Quantification plays a key
role to deliver reliable solutions. At the same time optimised solutions have become a necessity
and optimisation is now an essential tool to handle the complexity of our world. Different sectors
and communities, deal with uncertainties and optimisation in different forms often equivalent or
complementary.

UTOPIAE exploits the intimate relationship between optimisation and UQ to make Optimisation
Under Uncertainty (OUU) of complex engineering systems tractable.



2. Optimisation

2.1 Brachistochrone problem definition

Johann Bernoulli, the famous Swiss mathematician mostly known for his studies in fluid dynamics,
probability and statistics, posed the problem of the brachistochrone to the readers of Acta Eruditorum
in June, 1696

I, Johann Bernoulli, address the most brilliant mathematicians in the world. Nothing is more
attractive to intelligent people than an honest, challenging problem, whose possible solution
will bestow fame and remain as a lasting monument. Following the example set by Pascal,

Fermat, etc., I hope to gain the gratitude of the whole scientific community by placing before
the finest mathematicians of our time a problem which will test their methods and the

strength of their intellect. If someone communicates to me the solution of the proposed
problem, I shall publicly declare him worthy of praise.

Given two points A and B in a vertical plane, what is the curve traced out by a point acted
on only by gravity, which starts at A and reaches B in the shortest time.

Are you ready to be challenged by Bernoulli?
The problem posed by Bernoulli is a classic optimisation problem aimed at computing the path that
can get you from point A to point B in the shortest time. Thise kind of problem is solved daily by
the GPS in your car. To compute the shortest or the fastest path between two addresses the software
is solving a problem of reducing to the minimum the distance in the first case, and reducing to the
minimum the time in the second case (this is not always the same thing!!!).
The problem posed by Bernulli is known as Brachistochrone, from the Greek words brakhisto="the
shortest" and chronos="time".
History records Newton solving it in the quickest time. Just a few decades earlier Galileo, without
the benefit of Calculus, looked at this problem and got the incorrect answer, so don’t feel bad if you
struggle too!
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Figure 2.1: Newton attempt to solve the problem

2.2 How to solve the problem mathematically
To calculate the optimal path does not just require vanilla calculus (where you are minimizing a
variable in a function), but instead requires minimizing a function that minimizes some other variables.
This is known as calculus of variations. The basis of the calculation is about the conservation of

Figure 2.2: Geometrical representation of the problem

energy. The potential energy lost by the falling bead (in the vertical plane), is converted into kinetic
energy. If we measure the distance along the arc as s, and an infinitely small piece as ds, then the
velocity is

v =
ds
dt

and for the conservation of kinetic energy and gravitational potential energy we have that

1
2

mv2 = mgy
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By solving this equation we have that
v =

√
2gy

The integral from the time-step when the ball is at the starting location, the origin of the reference
system that we call tA, and the time-step of arrival that we call tB, is the duration of motion, T
computed as

T =
∫ tB

tA
dt

By substituting the previous equations we have that

T =
∫ tB

tA
dt =

∫ tB

tA

ds
v

=
1√
2g

∫ tB

tA

√
dx2 +dy2
√

y

where ds =
√

dx2 +dy2 is the Pitagora theorem applied to an infinitesimal small step. The path is

defined in the graph as y(x), so different paths will have different functions for how the gradient
changes. The goal is to find the minimum functional of y(x). Rewriting the last equation as the
integral between two points in space xA, the origin of the system, and xB the arrival point, we have
that

T =
1√
2g

∫ tB

tA

√
dx2 +dy2
√

y
=

1√
2g

∫ xB

xA

√
1+( dy

dx)
2

√
x

dx

We know the path is continuous (no gaps, and no instantaneous changes in velocity), and we know
there is an acceleration term, so there will be a non-zero second derivative dy2/dx2, and we know
the two values for the endpoints.

The actual analytic derivation of the function y(x) that minimises T is too advanced to be reported
here, so cutting to the chase, here is the result. It’s a pair of parametric equations for the x and y
coordinates in w.r.t θ , the angle reported in the picture above{

x(θ) = k(θ − sinθ)
y(θ) = k(1− cosθ)

Where k is a constant scaled to make sure the curve passes through the end point (xB,yB).
The above parametric equations describe a curve called a cycloid. A cycloid is usually pictured

as the path of a point on a circle that is rolling along the ground like a wheel

Figure 2.3: Cycloid
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2.3 How to solve the problem experimentally

Build a cycloidal track and for comparison purposes also a straight and a highly curved one. To do
this, proceed as follows:
• Mark a point on the circumference of a hoop, lid, or other circular object, whose radius

you have measured. The height of your brachistocrone ramp is going to be diameter of the
circumference you will use.
• Roll it in a vertical plane and trace the locus of the point on a piece of cardboard placed behind

the rolling object.
• Transfer the trace to a 2 cm-thick board and cut out very carefully with a jigsaw along the

locus of points
• Lay along the profile line a flexible plastic track with a groove, of the same width as the

thickness of the board, obtainable from household or electrical supplies stores. An alternative
is to use plastic tubes that need to be fixed on the support as in figure 2.4

Your cycloid track is ready.
Building the straight one and the highly curved one are straightforward. 2.4. You can place a target

Figure 2.4: Example of racing tracks

to be hit at the end of the track. The first ball on the track that will hit it is the winner... guess who it
is going to be? The cycloid curve of course!

Material needed
• 5, 2cm thick board
• 1 circular object (lid, hoop, ...)
• jigsaw
• 3 plastic tracks or 3 plastic tubes
• glue gun and/or electrical clamps
• 3 marble balls and 3 targets
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2.4 Examples of Brachistochrone in real life
• Rollercoaster (Figure 2.5a): Brachistochrone curves are useful for engineers and designers

of roller coasters. These people might have a need to accelerate the car to the highest speed
possible in the shortest possible vertical drop. As we have just proved, the brachistochrone
path is the quickest way to get between two points.
• Skateboard half pipe (Figure 2.5b): A mathematically perfect skate park bowl should have

sides that are shaped as a tautochrone (a brachistocrone in a uniform gravitational field). If you
collide with someone on one of these, you can rest assured that everyone, and their equipment
will get to a pile at the bottom of the hill at the same time!
• Ski jumping (Figure 2.5c): As I understand it, there is no defined standard for ski-jump

profiles (many being built-into the surrounding terrain and using the natural gradient), but
if you were going to construct one, you could give it a brachistochronic profile. A bonus of
this is that it you could enter the ramp at any point of the curve, and it would take the same
amount of time before you flew off the edge. By slowly working your way up the ramp you
could gradually increase your exit speed whilst keeping your ’slope time’ a constant.
• Surfing (Figure 2.5d): many surfing manoeuvres follow the line of the brachistochrone curve

whether it is executing a turn down a wave to carve back up and rejoin the peel of a spilling
wave or getting up to speed as quickly as possible to ride the barrel of a plunging wave. In
fact ,surfing is about having fun and maybe the surfers are simply taking the path which gives
them the greatest sense of acceleration

(a) Rollercoaster (b) Skateboard half pipe

(c) Ski jumping

(d) Surfing





3. Uncertainty Quantification

3.1 Probability and Statistics

Probability is the study of random events. It is used in analyzing games of chance, genetics, weather
prediction, and a myriad of other everyday events. Statistics is the mathematics we use to collect,
organize, and interpret numerical data. It is used to describe and analyze sets of test scores, election
results, and shoppers’ preferences for particular products. Probability and statistics are closely linked
because statistical data are frequently analyzed to see whether conclusions can be drawn legitimately
about a particular phenomenon and also to make predictions about future events. For instance, early
election results are analyzed to see if they conform to predictions from pre-election polls and also to
predict the final outcome of the election.
Understanding probability and statistics is essential in the modern world, where the print and
electronic media are full of statistical information and interpretation. The goal of mathematical
instruction in this area should be to make students sensible, critical users of probability and statistics,
able to apply their processes and principles to real-world problems. Students should not think that
those people who did not win the lottery yesterday have a greater chance of winning today! They
should not believe an argument merely because various statistics are offered. Rather, they should be
able to judge whether the statistics are meaningful and are being used appropriately.

In the area of probability, young children start out simply learning to use probability terms correctly.
Words like possibly , probably , and certainly have definite meanings, referring to the increasing
likelihood of an event happening, and it takes children some time to begin to use them correctly.
Beyond that, though, elementary age children are certainly able to understand the probability of
an event . Starting with phrases like once in six tosses , children progress to more sophisticated
probability language like chances are one out of six, and finally to standard fractional, decimal, and
percent notation for the expression of a probability. To motivate and foster that maturation, students
should be regularly engaged in predicting and determining probabilities.
The theoretical probability is the probability based on a mathematical analysis of the physical
properties and behavior of the objects involved in the event. For instance, when a fair die is rolled
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each face is equally likely to wind up on top, and so the probability of any particular face showing is
one-sixth. Experimental probabilities are determined by data gathered through experiments.

The probability of an event is generally computed as

Probability of an event = (number of ways it can happen) / (total number of outcomes)

• The probability of an event can only be between 0 and 1 and can also be written as a percentage.
• The probability of event A is often written as P(A),
• If P(A)> P(B), then event A has a higher chance of occurring than event B.
• If P(A) = P(B) then events A and B are equally likely to occur
• The sum of the probability of all possible events is 1

3.2 Experiment
Divide the class in two groups and provide each group with the set of material outlined below. The
question is: if you throw 2 dice together and add the two scores:

1. What is the least possible total score?
2. What is the greatest possible total score?
3. What do you think is the most likely total score?

The common die has 6 faces as in Figure 3.1. Hence the least possible score is obtained by summing

Figure 3.1: Die faces numbered from 1... 6

the smallest values on the die
1+1 = 2

and the greatest possible score is obtained by summing the highest values of the die

6+6 = 12

What about the most likely?
To answer this question, each group throws two dice together 108 times, add the scores together each
time and record the scores in a table (as in Table 3.1) by using tally marks.
Each then group now draws a bar graph to illustrate their results, something like the one in figure
3.2a. Does the results of the two groups have a similar shape?
So why did you get that shape? The explanation is simple: there is only one way to get a total of 2 (1
+ 1), but there are six ways of getting a total of 7 (1 + 6, 2 + 5, 3 + 4, 4 + 3, 5 + 2 and 6 + 1). In
Table 3.2b there is the table of all possible outcomes and the total of the sum of the two. Hence there
is one way to get 2 and 12, two ways of getting 3 and 11, three ways of getting 4 and 10, ... and so
on, till six ways to get a total of 7.
The reason why it has been asked to throw the dice 108 time it is because, given that 36 are the
different possible combinations, 108=36x3. Hence theoretically your experimental results should
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Added score Tally marks Frequency
2
3
4
5
6
7
8
9

10
11
12

Total frequency = 108

Table 3.1: Experimental results table

(a) Dice throw results (b) Possible outcomes

look like something as in Figure 3.3 where 2 and 12 happen 3 times, 3 and 11 six times, 4 and 10
nine times, and so on...
How do these theoretical results compare with your experimental results? This graph and your graph
should be quite similar, but they are not likely to be exactly the same, as your experiment relied on
chance, and the number of times you did it was fairly small. If you did the experiment a very large
number of times, you should get results much closer to the theoretical ones. As last exercise you can
compute te probability associate to each event:

• The probability of getting 2 is 1/36
• The probability of getting 3 is 2/36
• The probability of getting 4 is 3/36
• ...
•
• The probability of getting 7 is 6/36
• ...

As final, sum the probability of all events and verify that is equal to 1.

And, by the way, we’ve now answered the question from near the beginning of the experiment:
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Figure 3.3: Caption

What is the most likely total score?

7 has the highest bar, so 7 is the most likely total score.
Hey, is that why people talk about Lucky 7 ... ?

Material needed
• 2x 2 dice with 6 faces numbered from 1 to 6
• 2x 1 marker
• 2x Pen and paper to record data

3.3 Introduction of Uncertainty
What if the two dice are not standard dice with 6 faces numbered from 1...6? What if the sum is
not recorded correctly? These two simple situation will be adding a degree of uncertainty to your
experiment.

With the marker the teacher can draw on traditional dice to modify their face number. The ex-
periment above can be repeated with the new set of dice. The teacher will provide the students with
the result of the sum of the two dice, the student cannot see the dice themselves. The new results
need to be compared with the previous one.

What can you infer from the new results? Are the results you wehere expecting? How can you treat
the uncertainty in the problem?
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